If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2+14n-45=0
a = 1; b = 14; c = -45;
Δ = b2-4ac
Δ = 142-4·1·(-45)
Δ = 376
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{376}=\sqrt{4*94}=\sqrt{4}*\sqrt{94}=2\sqrt{94}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{94}}{2*1}=\frac{-14-2\sqrt{94}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{94}}{2*1}=\frac{-14+2\sqrt{94}}{2} $
| b(14)=170 | | 4(b-2)=2(b+3) | | -5/4x=-x+3(-1/3x+1)+1 | | -16x-17=-161 | | 5n−4=26 | | 4a+2=2a-8 | | (x+3)^2=20 | | 12=4(w-7)-8w | | 3+6x=4.5 | | Yx.0825=513.41 | | -12-0,3x=9 | | -3x+22=19 | | 2.5+10m=6.69 | | 8z+23=17 | | x/2+x/3+x/5=52 | | -6(-7x-14)=-420 | | x/2+x/3+x/4=52 | | 5+45=-5(2x-10) | | -12+47=-5(x+8) | | (9x-9)=(7x+1) | | 16+14=-3(8x-10) | | 0.4x-9.9=7.9 | | -3/5(-5x+5)=15 | | 4(3x+5)=-48+44 | | 8(x+3)+4=28 | | F(x)=x^2+8+1 | | 3/4x+2-3=-1/4x+21 | | x+48=9x | | (3/4)x-12=-18 | | -8w-2(3+w)=19 | | 6x+19=8x+23 | | 4(5x+8)=-49+61 |